Flexible constrained sampling with guarantees for pattern mining

Vladimir Dzyuba, DTAI, KU Leuven Matthijs van Leeuwen, LIACS, Leiden University Luc De Raedt, DTAI, KU Leuven

ECMLPKDD'17 Journal Track

September 19, 2017

The first pattern sampler that

- supports arbitrary constraints
- supports arbitrary sampling distributions
- provides guarantees on accuracy and efficiency
- goes beyond sampling of individual patterns: it allows to sample k-pattern sets

We regard pattern mining as a tool for exploratory data analysis

Patterns are interpretable descriptions of interesting data regions

What is *interesting*?

Formal problem statement

Given

- $\mathcal D$ Dataset
- Constraints on patterns (*length*, *closedness*...)
- arphi Measure of pattern quality (frequency, discriminativity...)

Find

Patterns that satisfy all constraints in $\mathcal C$ and have high quality as measured by φ , e.g., top-k

Properties of a good...

Result set

- Compact Easy to inspect for a human user
- Interesting Satisfies $\mathcal C$ and 'high' φ

Mining algorithm Efficient User's patience is limited

Properties of a good...

Result setCompactEasy to inspect for a human userInteresting?Satisfies C and 'high' φ

Mining algorithm Efficient User's patience is limited

Ideal user

I am only interested in top-50 patterns according to purity that are closed and have frequency above 40 and length above 7

Real-world user

Well, they should be frequent enough, maybe 40, and probably have more \oplus s than \oplus s... Purity? Closed? Can I just see a few first?

Properties of a good...

Result set

- Compact Easy to inspect for a human user
- **Interesting** Satisfies C and 'high' φ
- **Diverse** Allows for serendipity and avoids redundancy

Mining algorithm

- Efficient User's patience is limited
- Flexible Supports exploring various constraints and quality measures

Running example from itemset mining

$$\mathcal{D} = \texttt{vote}$$

$$\mathcal{C} = \{Frequency \ge 40, \\ Closed, Length \ge 7\}$$

$$\varphi\left(p\right)=Frequency\left(p\right)$$

Example: pattern space illustration

Example: pattern space illustration

Top-10 is not diverse/representative

More representative set of 10 patterns

Pattern sampling

Given

- ${\mathcal D}$ Dataset
- Constraints on patterns (*length*, *closedness*...)
- φ Measure of pattern quality (*frequency*, *discriminativity*...)

Generate randomly

Patterns satisfying $\mathcal C$ proportional to their quality φ : $P(p \text{ is in the result set}) \propto \varphi(p)$

Benefits of pattern sampling

Result set is...

Compact Growing result set by request

Interesting Respects C and φ

Diverse "Naturally", owing to randomization

Sampling is...

Efficient 'Anytime': sample patterns one by one

Benefits & challenges of pattern sampling

Result set is...

Compact Growing result set by request

Interesting Respects C and φ

Diverse "Naturally", owing to randomization

Sampling is...

Efficient 'Anytime': sample patterns one by one

Flexible How to sample given *arbitrary* C and φ ?

Flexics Flexible constrained pattern sampler

- Supports black-box quality measures...
- ...in combination with arbitrary constraints
- Provides accuracy and runtime guarantees

High-level sampling procedure based on hashing (Chakraborty et al. 2014)

- Partition the pattern space into random non-overlapping "cells"
- Enumerate patterns in a randomly chosen cell
- **3** Return a perfect sample from the cell

How to obtain "good" random cells?

Append *random* XOR constraints on pattern descriptions to $\mathcal C$

 $k \text{ XOR constraints} \Leftrightarrow \text{one out of } 2^k$ "cells"

$$\begin{cases} \bigotimes \underbrace{b_{1i} \cdot p_i}_{0/1} = b_{10} \\ \bigotimes b_{2i} \cdot p_i = b_{20} \\ \cdots \\ \bigotimes b_{ki} \cdot p_i = b_{k0} \end{cases}$$
$$p_i = 1 \text{ if item } i \in \text{pattern } p$$

Flipping a coin for coefficients $b_{0|i}$ yields "good" random cells

Cell membership is independent of pattern description $N_{XOR} = 6$ determined during pre-processing

Cell membership is independent of pattern description $N_{XOR} = 6$ determined during pre-processing

Many miners can be augmented with XOR constraint handling and used as a "backend" for *Flexics*

Uses binary Gaussian elimination

The "backend" doesn't need any knowledge about φ !

Two "backends" = two variants of Flexics

- ► CP4IM (Guns et al. 2011) ⇒ GFlexics Generic mining system based on constraint programming Supports a wide range of constraints & pattern types: itemsets, tilings...
- ► Eclat (Zaki et al. 1997) ⇒ EFlexics Efficient frequent itemset sampler

Flexics provides theoretical guarantees on both sampling error and the number of backend calls (with any backend)

Experimental evaluation

Flexics samples with high accuracy

Flexics can handle moderately large data

Flexics supports sampling of complex patterns Sampling 2-tilings proportional to their area

Conclusions

► *Flexics* is efficient and flexible,

which compensates for not knowing upfront what is interesting in both supervised and unsupervised data exploration, and

makes pattern mining practically more applicable

- Simple procedure enables further tinkering, e.g., in interactive mining (Dzyuba & van Leeuwen 2017)
- Future work includes reducing effect of *tilt* and extending to richer pattern languages, e.g., sequences